Memory Management
Extensions for OpenMP 5.0

2017 CoE Performance Portability Meeting
Denver, Colorado, USA
August 21, 2017

@ National Stephen Olivier
Laboratories]
Center for Computing Research, SNL-NM

Exceptional

service

in the

7% U.S. DEPARTMENT OF / VY A] ‘\Q,'a
P v Q.
Y/ENERGY /MVA'AN"S
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-8969 PE

national

interest

o Sandia
Outline) e

= Core features (near completion)
= QOpenMP allocators
= allocate directive and clause

= omp alloc() and omp free() APIroutinesfor C/C++
= Default allocator

* declare alloc directiveand omp alloc.h

= Additional features (less mature)
= Memory spaces and traits

= User-defined custom allocators
= Fallback

Sandia

OpenMP Allocators) ..

= Fundamental concept: object that fulfills allocation requests

= |nitially, choice of predefined allocators only:
= Default
= High capacity
= Constant (read-only)
= High bandwidth
= Low latency
= Team local

= Mapping to actual system resources by the implementation
= E.g., may map all or most to DDR

3

allocate Directive and Clause ([@&s.

= Specifies that the OpenMP implementation will perform the
memory allocation and indicates which allocator to use

= Directive may be used either by itself or with an associated
base language allocation statement

= Syntax: #pragma omp allocate(var-list) \
[allocator (predef-allocator)]

" Clause may be used on parallel, task, target, and
worksharing (e.g., loop) directives

= deallocate directive for deallocation

C/C++ API Routines) .,

= omp alloc /() call to allocate memory

= Specify size and which allocator to use

= omp free() call todeallocate memory

= Strong resemblancetomalloc() and free()

Default Allocator) e,

= Default allocator used when an allocator is not specified on
an allocation directive, clause, or API routine call

= Separate target default allocator used only when the
allocate clause appears on the target directive

= Allows a different default for non-host allocations

= APlroutines: set/get omp default allocator()
and set/get omp target default allocator()

= Environment variables: OMP_ALLOCATOR and
OMP TARGET ALLOCATOR

6

declare alloc) e

= Registers existing allocation functions with OpenMP

= Specifies how to interpret the behavior of the function, its
arguments, and its return value:

= Allocation, reallocation, or deallocation behaviors
= Size of allocation, pointer to allocation, error code

= Example:

= Given the function void* special alloc(size t size);

" #pragma omp declare alloc (special alloc) \
allocate(omp return) size(omp args[0])

7
'

omp alloc.h headerfile S,
= New header file to be delivered by implementations

= Registers popular allocation functions with OpenMP using
declare alloc directives:

= malloc()

" posix memalign()
= calloc()

" aligned alloc()
= realloc()

= free()

8
'

Future Features: Memory Spaces @&z

= Define memory spaces based on combinations of traits

= Memory space traits span various dimensions, for example:
= Location (core, socket, device)
= Capacity and page size
= Permissions (read, write, both)
= Bandwidth, latency, or capacity

= Example: device, read-only, low latency memory

9
'

Future Features: Custom Allocators @Ez.

= User-defined allocators express desired set of memory space
traits

= |mplementation finds the memory space that best matches

= Allocators have traits too:
= Alignment
"= Pinning
= Shared/exclusive thread model
= Fallback

10
'

Sandia
rh National
Laboratories

Future Features: Fallback

= Fallback allocator trait specifies what to do when a memory
request cannot be satisfied

= Fallback allocator trait options:

= ReturnO
= Abort the program
= Delegate to another specified allocator

= Tryin the default memory space

Other Future Features 1) .
= Better support for C++

= Explicit optimization for NUMA

= Resource querying

= Special code generation, as required on some new memories

= Static (compile-time) allocator mappings

12

Other Contributors) i,

= Alex Duran (Intel) — Proposal Lead

= Christian Terboven (RWTH Aachen) — OpenMP Affinity Chair
= Deepak Eachempati and Jeff Sandoval (Cray)

= Kelvin Li and Alex Eichenberger (IBM)

= Alex Rico and Jonathan Beard (ARM)

= John Pennycook, Jason Sewall, Xinmin Tian (Intel)

= Jan Karlin, Tom Scogland, and Bronis de Supinski (LLNL)

= Helen He and Alice Koniges (LBNL)

= Kent Milfeld and Lars Koesterke (TACC)

= <Your name here> -- Really, please give us feedback!

13

